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A Multiline Method of Network
Analyzer Calibration

Roger B. Marks, Member, IEEE

Abstract —This paper presents a new method for the calibra-
tion of network analyzers. The essential feature is the use of
multiple, redundant transmission line standards. The addi-
tional information provided by the redundant standards is used
to minimize the effects of random errors, such as those caused
by imperfect connector repeatability. The resulting method ex-
hibits improvements in both accuracy and bandwidth over con-
ventional methods.

The basis of the statistical treatment is a linearized error
analysis of the TRL (thru-reflect-line) calibration method. This
analysis, presented here, is useful in the assessment of calibra-
tion accuracy. It also yields new results relevant to the choice of
standards.

1. INTRODUCTION

ERHAPS the most precise means of network ana-

lyzer calibration is the TRL (thru-reflect-line) method
[1]. This technique uses as standards two transmission
lines, one of which is designated the “thru,” as well as
an arbitrary one-port “reflect” termination. Certain in-
evitable errors, especially connector nonrepeatability, limit
the accuracy of any calibration method. The susceptibility
of the TRL method to these errors has not been previ-
ously studied in detail.

The TRL error analysis developed below is valuable
because it suggests tactics for error minimization, One
novel result requires a modification of conventional de-
sign rules for the choice of line lengths when the lines are
lossy. Loss is shown to increase the calibration accuracy,
so that a lossy line may provide a usable calibration over a
broader band than conventionally assumed.

In addition to error minimization, the results of the
error analysis suggest a strategy for error reduction. The
proposed method makes use of multiple, redundant line
standards, by which we mean more than one line in
addition to the thru.

The conventional TRL method, while employing multi-
ple lines, does not use them simultaneously. The method
is typically applied over a bandwidth no larger than 8:1.
For wider bandwidths, a second line is normally em-
ployed, and the band is split. This analysis will show that
the limitation of each line measurement to only a portion
of the band neglects a large amount of data that could be
used to reduce the overall error. Another drawback of the
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split-band method, namely the calibration discontinuity at
the frequency break point, can also be eliminated.

Redundant standards have been used in previous cali-
bration methods. Least-squares solutions have been ap-
plied to both four-port [2] and six-port reflectometers [3],
[4]. An automatic network analyzer (ANA) calibration
method [5] allows incompletely characterized standards of
the TRL type but requires the iterative solution of an
overdetermined, nonlinear system of at least 12 simulta-
neous equations with nine complex unknowns. Unfortu-
nately, without accurate estimates of the relevant covari-
ances, none of these least-squares methods ensures
optimal (in some cases even unbiased) estimates of the
calibration constants,

In contrast, the present method makes use of the
known, linear solution to the simple TRIL problem and
linearizes the errors. Iterative solutions are avoided be-
cause all computations are linear. The computations are
compact because the calibration constants are determined
individually instead of en masse. The order of the linear
systems is simply the number of lines, excluding the thru,
and some of the matrices are analytically invertible. Per-
haps the most significant distinction, however, is that, to
linear order, the current method provides optimal, mini-
mum-variance estimates of the calibration constants
themselves. ,

One other use of multiple transmission lines is our own
earlier version [6], [7], based on a crude estimate of the
covariance matrices instead of the expressions derived

" here. The current method has previously been presented

in conference [8]. ‘

The current algorithm hinges on the determination of
the linearized covariance matrix. That matrix can be ex-
plicitly evaluated only with certain assumptions on the
nature of the errors and their correlations. The assump-
tions made here are appropriate to random repeatability
errors in connectors. In order to model other errors, such
as systematic transmission line imperfections, certain
modifications may need to be made. The errors need not
be normally distributed.

II. ERROR ANALYSIS

The problem is most conveniently analyzed in terms of
cascade parameters. We choose a definition such that the
cascade matrix of a two-port with cascade matrix A
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connected in series fo the left of another two-port with
cascade matrix B is simply AB.

In order to take advantage of symmetries in the prob-
lem at hand, we require the capability of reversing the
direction of the cascade. The reverse cascade matrix,
which we denote by the overbar, is related to the matrix
inverse by

ZZFE[O 1]A_1[0 1]. (1)

10 10

The measured cascade parameters of standard i are
simply
Mi=XT'Y (2)
where X and Y are the unknown cascade matrices to be
determined. Thé overbar in (2) reflects the fact that the
matrix Y is defined to cascade “right to left.” This
representation takes advantage of the symmetry; as a
consequence, all of the results shown here for determina-
tion of X lead directly to results for Y by the simple
exchange of the port numbers “1” and “2.”
In (2), T! is the actual cascade matrix of standard i. If
the standard is an ideal transmission line and the connec-
tors are perfect, then T is simply given by

L‘E[e—wl 0 :|E

0 etk

Ei 0

0 E& )

where vy is the propagation constant and /, is the length
of line i. If, however, the standard is a nonideal line, we
can represent its cascade matrix as

T = (1+8%)Li(1+6%) (4)

where the (presumably) small matrices 8% and 8% repre-
sent imperfections. The introduction of fwo perturbing
matrices allows the association of an error term with each
port: 8 with port 1 and 6% with port 2. This is a
convenient representation of nonideal connectors. Later
on, we will make some assumption about the statistical
distributions of these errors. For the moment, we assume
only that they are small.

To complete the symmetry of the description, the port
2 perturbation (I +6%), like Y, is defined to cascade
“right to left.”

Given any pair of line measurements, two equations of
the form (2) lead to

MYX = XT" (5)
where
Mi=M(M) (6)
and
T =T/(T) . (7)

Consider first the case in which all of the 8’s vanish and
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T reduces to

» o E! /E! 0
T 1V L
0 Ej /E;
= EY 0 _ e 0 (8)
1o EY 0 et |’

In this case, as pointed out in [9], (5) has the form of an
eigenvalue problem; the diagonal elements (E} and E¥)
of T% are the eigenvalues and the columns of X the
eigenvectors, respectively, of M%. Since each of the
eigenvectors is of arbitrary magnitude, (5) determines two
of the parameters of X.

If, instead, the lines or connectors are imperfect, then
T* is not diagonal and the problem is more complicated
since the eigenvectors of M* are no longer the quantities
of interest. We therefore assume each § to be a small
parameter and consider the resulting perturbation prob-
lem for the eigenvectors and eigenvalues. In practice, we
always determine the eigenvalues and eigenvectors of
M, These, however, are easily related to the eigenvalues
and eigenvectors of T¥. If V¥ and A¥, respectively, are
the eigenvector and eigenvalue matrices of 7%, then

THV I =Y UAT 9
from which follows
MYUY =UYAY (10)
where
Ui=XxVY, (11)

In other words, M¥ and T% have the same eigenvalues,
and their eigenvectors are related by (11). Thus we can
analyze the effects of the perturbations on the matrix MY
via their effects on 7%.

First expand the port 2 perturbation in terms of 6%, the
components of which we assume to have magnitude much
less than 1. To first order,

- — -1 ———er —~
T+8%=(I+6%) =(I-8%)I-6%  (12)

Using (12) in (4) and assuming that the components of

8% are also small, we obtain the first-order result

() = (1=5%) (L) (1 + ")
~ (I1+87) (L) (1= 38"Y). (13)
Insert (13) into (7) and collect the first-order terms:
TV~ LV 4 8YLY — 198" + L[3% —6%] (1) ™" (14)
which can be expressed as

T L+ e9

(15)
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where the linear difference term is defined as
(81f — 811+ 8% — 833 EY
SHEY — 8 EY + (8% -

el =

The errors are conveniently expressed in terms of the
scattering parameters of the imperfections. To first order
in the elements of 8, the scattering matrices S'* and $*
of the port 1 and port 2 imperfections, respectively, are!

sy 146k
Sl o (17)
|1-8%  —85
and
_ 820 s ]
S2i ~ 621 1 822 (18)
i 1+ 5]2{ 8125 J
in terms of which (16) can be written, to first order, as
susy 1,
Shisa !
eV =

SLEY— SUEY + (SZ’ -8 2’) \E}

To first order, the off-diagonal elements of e (and &)
represent errors in the measurement of the reflection
coefficients of the line, whereas their diagonal elements
represent errors in the measurement of the transmission
coefficients of the line.

A. Eigenvalue Perturbation and the Propagation Constant
The eigenvalues A} and AJ of T (and of M%) are

sy =3 (e ) ey (T ey | o)
but we know that the zero-order eigenvalues are £V and
E}. We assume that the eigenvalue A/ is associated with

U, not with EY. In practice, this can be ensured by
comparing an estimate of E}/, based on an estimate of the
line lengths and the propagation constant, with, the two
computed eigenvalues. We seek an expansion of Ay and
X4y about their zero-order values, of the form

ij
P

Ty

mn

NI EY o+ Z e (21)

8=0

where the notation & =0 indicates the zero-order limit

81 =§% =Y =5%=0. Carrying out the differentiation
leads to
o 1 (22)
aTy 5—0

"The ports of the “imperfections” are numbered in accordance with
those of the ANA, so that port 1 (port 2) is nearer port 1 (port 2) of the
ANA.

83)ELE]
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BYEY ~ S4EY + (3%~ o)) FiE} 16
(55 — % + 5% - 83 EY
and
axj )
T35 |s_ o

with all other derivatives vamshmg to zero order. Thus
(21) reduces to

M= B+ eli= EV(L+ o}~ ol + 03 - 5) (24)

and
N = E”+e” = E§1(1+6%§— 1 +812{—812{). (25)
SHEY ~ SHEY+ (5%~ SH) E{ ]
lzs2i (19)
- —1|E¥Y
[s 182 2

Equations (24) and (25) express the sensitivity of the
cigenvalues to the perturbations. Notice that they are
independent of the off-diagonal elements of the matrix
€". Linear errors in the eigenvaues are induced only by
errors in the transmission coefficients S;, and §,, of the
line measurements. Small reflections do not affect the
result. ‘

Recall that A} and A4 are the eigenvalues of MY,
determined by the measured data. Also, E/=1/EY =
exp(—y[l, — ,]. Provided the line lengths ll and [; are
known, both (24) and (25) provide an estimate of EY/ and
thence the propagation constant y. At first glance, these
may appear to be independent measurements. However,
if the two imperfections are reciprocal, their S parameters
must satisfy the condition S, =S,,. In view of (17) and
(18), the estimates of E} from (24) and (25) are then
identical to first order and can be used interchangeably.
On the other hand, the two estimates may differ to
second order, so there may be slight advantage in using
the average of the two expressions. We therefore define

o1 ) 1
N = (M +1/89) = By |1+ 5 (4 - 814+ 8% -

+8i{ — 811 +8% —6%)|. (26)

To first order, the geometric mean is identical to the
algebraic mean. The advantage of the geometric mean is
that it can be computed knowing only the ratios of the
elements of MY, making it practical for use with dual-
reflectometer network analyzers which may not provide
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an explicit measurement of M¥. Its drawback is that it
requires a root choice.
From (26), we solve for an estimate of the propagation
constant:
In (A7) .
Y= TRy A

i J

(27)
where the explicit linear error term is

1
Ay = Sy Lot~ i+ 0% = 0

i J

+8Y — 0%+ 8% —83]. (28)

This simple result clearly demonstrates that the error in y
is minimized by maximizing the difference in line lengths.
As discussed in the following subsection, the error in the
calibration constants is of entirely different form.

B. Eigenvector Perturbation and the Calibration Constants

Equation (9) defines V¥ as the eigenvector matrix of
T%; that is, its columns are eigenvectors of 7. In order
to normalize these eigenvectors, choose one element of
each column to be unity, thereby defining V¥ by

el 1w
Vi = [Uif ! (29)
One can determine u* and v*:

W= 2;2,{ [T =T+ (A3 - a7)] (30)
and

i = [T - T4 + (X4 — A7)] (31)

~aT

where the eigenvalues A\¥ are given by (20). If the errors &
vanish, then 7% reduces to the diagonal matrix I/ and,
as a result, 4 and v” also vanish.

The eigenvector matrix UY of MY is equal to XV¥.
Representing X by

= a b <
X= r[c 1] (32)
we find that
+uvb b+’
xvu=r|?T" ) (33)
c+uv’ 1+ upc

We may renormalize these eigenvectors by dividing thé
first column by its first element and the second column by
its second element. Thus,

Sl 1 a¥
Ui = [ﬁ” ) } (34)
where
b+ ua
J = T e e (35)
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and

(36)

Computation of the eigenvectors of the measured ma-
trix M*, which requires only the ratios of the elements of
MY, produces «” and B%. In the errorless case & =0,
both w* and v¥ vanish, and «” and B8“ reduce to b and
¢/a, two parameters of the unknown matrix X which
were to be determined. The determination of b and ¢ /a
is part of the standard TRL process.

More generally, we wish to observe the first-order ex-
pansions of «¥ and B“ with respect to small perturba-
tions. These take the form

dat/
a’ =b+ Z €, 9T (37)
m,n mn |§=0
‘and
¢ apy
Bi=—+ Y € - (38)
a m,n mnaTm]n 56=0
The partial derivatives are expanded:
dat  dav ut da¥ ovY
T iy 1y + ij i (39)
aT;nn aM aTmn aU a]-‘}'Ill’l

but the last term vanishes. A similar expression holds for
BY.

The differentiations with respect to u*/ and v* can be
carried out using (35) and (36); in the zero-order limit, the
results are

oa’ b (40
=g —bc
aMl] 50 )
and
B a—bc
wYls—o  a® (41)

The other two derivatives vanish.

In order to evaluate the derivatives of p”/ and v with
respect to the elements of TV, return to (30) and (31).
The zero-order limits are

o 1
- = — (42)
Ty 50 £y - EY
and
av¥ 1
= — - 43
Ty 520 EV—-FEY (43)

All of the other derivatives vanish in this limit.
Combining all of these results with (37) and (38) yields

a’=b+ Aa¥ (44)
and

B~ =+ ap (45)
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where the explicit linear error terms are

Ll (46)
EY - EY
and
. a—bc
ABY = (47)

612]17‘%——:—.
a*(EY — EV)

Only the off-diagonal terms in e contribute first-order
errors in «” and BY. Thus linear errors are induced only
by errors in the reflection coefficients S;; and S,, of the
line measurements, not by transmission errors. A perfect
match or attenuator therefore provides the same calibra-
tion as a perfect transmission line standard. From the
previous section, however, we know that only the trans-
mission line allows the determination of the propagation
constant, required for movement of the reference plane.

Consider now the magnitude of the error term (46):

|Aa”| < [I8YI|EY |+ 8% | EV]

la — bc|

+183) — 83! E{E{] B BT
2 1

(48)
with a similar expression arising from 47). Since, for
small line loss, the terms EY and EY have magnitude
near unity, the dominant factor in determining the typical
magnitude of the error terms is the denominator. We can

write
EY—E{=2jsin[¢ - jp] (49)

where j=v —1 unless used as an index. We have defined
p=(,;—1)Re(y) and ¢ =(l;~[;)Im(y) as the loss and
phase shift, respectively, associated with the difference in
line lengths. Equation (49) leads to

|EY ~ E¥|* = 4sin® ¢ cosh? p +4cos® ¢ sinh? p.  (50)

For a lossless line, p =0 and

|Aa¥|,|ABY] & (51)
This result, that the error in the lossless case is inversely
proportional to the sine of the phase difference, was given
by Hoer [10]. In particular, the error becomes infinite
when the difference in phase delays is an integral multi-
ple of 180° illustrative of the well-known fact that the
TRL procedure is ill conditioned near these points,

In the lossy case, (51) is invalid near the maximum
error points, because (50) never vanishes. For the case of
low loss,

2lsin |

1 1 1
< S
|EY — EY| =~ 2lsinh p| ~ 2|pl

(52)

This result has interesting implications. For example, con-
sider a pair of lines with a 180° phase difference at some
frequency. Another pair of lines with twice the difference
in length will have a 360° phase difference and will also
produce an ill-conditioned calibration problem. However,
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the calibration error of the latter line pair is expected to
be only about half that of the first pair since p is
doubled.

This analysis of lossy lines yields some new design rules,
even in the case of conventional TRL calibration. For
example, it is common practice to limit a single pair of
lines to between 20° and 160°. For a lossless line, the
expected error at the band edges is approximately 2.92
times that at the optimal (90°) point. On the other hand,
for a lossy line with p=1/2.92 =~ 0.35, (52) predicts a
worst-case error, at 0° and 180°, that is no worse than the
lossless line at 20° and 160°. The accuracy increases
linearly with both the attenuation factor and the length
difference. Of course, for large losses, we need to con-
sider the numerator as well as the denominator of (46). A
more exact calculation of the probable error is discussed
in Section III. In general, if the loss is great enough, the
phase difference criterion is irrelevant and the calibration
bandwidth may be greatly extended. This is an advantage
of the LRM calibration method [11], which uses a
“match,” equivalent to an infinitely lossy attenuator, in
place of the line. One drawback of LRM is that it fails to
provide the propagation constant required to shift the
reference plane.

For the lossy case, it is appropriate to define the
effective phase difference, ¢.4:

Gegr = arcsin %(E;f - EY) (53)
since it is 1/|sin(¢,)| rather than 1/|sin ¢| which actu-
ally predicts the error. We stipulate that ¢ = 90° if the
argument of the arcsin is greater than 1. Since in the TRL
case an estimate of E¥ is available from the procedure of
subsection 1I-A, ¢ is easily computed as part of the
calibration routine.

All of the results of this section are applicable to the
determination of the second cascade matrix Y by the
interchange of Y and X and that of the port identifica-
tions 1 and 2.

C. Completion of the Calibration

In order to complete the calibration by determining the
remaining constants a and r, additional measurements
are required. The simplest requires the measurement of a
single unknown reflect termination on both ports [1]. The
analysis of the error involved in this procedure is not
included here.

JII. REDUNDANT MEASUREMENTS

The results (27) for the propagation constant and (44)
and (45) for the calibration constants form the basis of a
statistical treatment of redundant measurements. By way
of introduction, consider how we might use a redundant
set of “noisy” measurements of some parameter. If the
measurements are equally noisy, we might expect simple
data averaging to yield the most accurate estimate. On
the other hand, we may find that some measurements are
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inherently more noisy than others. Rather than either
ignoring these data or blindly including them in the
average, the best estimate of the parameter comes from a
weighted average in which the noisy data are given less
significance. The complete theory includes not only the
variations in accuracy of the various measurements but
also the correlations among them. It is this theory that we
require here and which will be briefly sketched in its
simplest relevant form.

Suppose that we wish to determine some parameter x.
To do so, we make N measurements b, of the quantity
a,x, where a, is presumed known. Each of these mea-
surements differs from the “true” value a,x by some
amount e,

b,=a,x+e,.

(54)

Assume that e, is a random variable whose expectation
value (denoted by {e,)) vanishes; that is, no systematic
errors are present. Let b and a represent column vectors
whose elements are b, and a,. According to the
Gauss—Markov theorem [12], the best unbiased linear
estimate of x is

x=(0)"a'V'b (55)

where “f” indicates Hermitian adjoint, the covariance
matrix V is defined by

Vo =ene,)

(56)
and o,, defined by

1
o, = ——— (57)
Y Va'vla
is the standard deviation of x. The estimate (55) is “best”
because it minimizes the variance of x. No assumption
about the distribution of errors is required in establish-
ment of this theorem.

A. Propagation Constant

The theory is applicable to the results of subsection
II-A with the substitutions

x=vy (38)
b, =In(A) (59)
a;=1,~1, (60)
and

e, =K, —K; (61)

where the term

1 .

k= 81— 8% + 8%t — 631] (62)

2

includes errors caused only by a single line. Note that a
multi-index # is used in place of the single index » used
previously.

In attempting to gather additional information concern-
ing y, we might first seek to reiterate the analysis of
subsection II-A but with the port identities interchanged.
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Unfortunately, (28) is invariant with respect to this change,
so no additional information is to be had. The same is
true of the interchange of the line identities i and j. Only
additional measurements provide additional information.

Now consider the addition of a third line measurement
M* to the two we have discussed. This provides two
further measurements, b, and b, in addition to (59).
Unfortunately, these three are not linearly independent,
since

e, te,=e,.

(63)

The Gauss—Markov theorem cannot be applied to a set of
linearly dependent measurements, since the resulting co-
variance matrix is singular. Only two of the three mea-
surements may be used. In general, we find that N
linearly independent measurements of the propagation
constant arise from the measurement of N +1 transmis-
sion lines (including the thru). We can consider these N
measurements to arise from the pairing of a particular
line i = 0 with each of the other lines.

In order to evaluate ¥V, we must make somec assump-
tions about the nature of the errors. However, in this
case, these assumptions do not need to be very restrictive,
since the covariances are simply

(efer) = {(r; = 1) * (= K )D
= (kFp) HKF R ) —kFr) —kFk, ). (64)

In the absence of any a priori reason to assume a
correlation between the errors in the measurements of
two different lines, we will ignore terms on the right with
nonmatching indices. Further, we assume for the pur-
poses of this paper that each of the lines is equally prone
to error. Thus,

(ki) = 85(a,)” (65)
where 55 is the Kronecker delta and o, is the standard
deviation in any of the «,.

We choose a simple ordering scheme in which a single
line measurement is common to all pairs. Specifically, in
(59), we let i = 0 represent the common line and let j run
from 1 through N. This provides the required N linearly
independent measurements and allows for the ready com-
putation of the covariance matrix:

Von = (14 85,)(0.) (66)
which is explicitly invertible as
V= (o) (6D
" N+ (0

Numerical matrix inversion is not required. Furthermore,
knowledge of o, is not required in the evaluation of vy,
since it appears in both the numerator and denominator
of (55). Knowledge of g, serves only to predict the
absolute variance of . On the other hand, we can always
predict relative estimates of ¢, and thereby compare

Y
various sets of calibration standards.
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B. Calibration Constants

The application of the Gauss—Markov theorem to the
results of subsection II-B requires the substitutions

xz{g}E{C?a}
b~ {Bj}

1 (70)

(68)

(69)

a;;

Ao
ezj = {Agt/ } . (71)

The three measurements Aa¥, Aa’*, and Aa’* are
jointly linearly dependent, and likewise ABY, AB**, and
Ap’*. Thus we use an ordering similar to that of the
previous section, forming N linearly independent mea-
surements by pairing some line i= 0 with each of the
other N-lines.

For both b and ¢ /a, the computation of V requires
the evaluation of 16 covariances among the elements of
the matrices 8. These have the form

(8,85 (72)

Some of these terms are calculable under fairly general
assumptions. Under the postulate that the errors in dif-
ferent lines are uncorrelated, half of the terms, those with
j 1, vanish. More problematic are terms of the form
(815831, (85 834 (73)
These terms may or may not vanish according to whether
or not the errors in the measurement are due to imper-
fect lines or imperfect connectors. If the lines are imper-
fect, we may well expect the port 1 and port 2 errors to be
correlated. On the other hand, errors caused only by
imperfect repeatability of the two connectors ought not to
be correlated. For this paper, we select the latter view-
point and thereby ignore the terms (73).
The only terms remaining are
8158y, (8i'st), (aiiex), (8383, (74)
Making the reasonable assumption that ports 1 and 2 are
equally “noisy,” the first and second terms and the third
and fourth terms of (74) are identical. In the absence of
any detailed information as to the nature of the connector

imperfection, we also make the plausible assumpticn that
the first and third terms are equal:

(BL81) = (8282 = (81784 ) = (8383 = (03)".
(75)

This amounts to the assumption that S;; and §,, of the
connector are equally “noisy,” as would be true for a
lossless imperfection.

Lest any of these assumptions leave us uncomfortable,
we note that any estimate of the form (55), regardless of
the validity of V, remains unbiased, if not the optimum
estimate.

and
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Using these conjectures, we compute the covariance
matrix for a:

e la — bel*(o,)°
IR (ng— Ei’j)*(Eél__ E{’)
+(1+ 8%) | EiPEFEY]  (76)

[Ei#EY + 6K |EY)

and for B:

e la — bel*(a3)°

ifj,il |a|4(E£J _ Ei])*(Eél - Eil)
+(1+ 85| ESPEFES]. (77)

[Ey*EY + 6K BV

Once again, the constant factors o3, la — bcl, and |a| are
required only to evaluate the variance in the estimates of
a and B; they do not affect the estimates themselves.
Furthermore, we can define the normalized standard de-
viations

O-H
=—— 78
a0 |d N bC|0'5 ( )
and
g,
Tgo £ (79)

lal*la — bclo,

which do not depend on any of these factors but only on
the properties of the calibration standards. In fact (78)
and (79) can be readily calculated using only the factors
E{, which can be computed using the propagation con-
stant, estimated in the previous section, and the known
line lengths. For the most part, these terms appear in the
form E¥ and EY¥; these are directly estimable as A} and
2§ without reference to line lengths. The normalization is
such that o, = g5, = 1 for a calibration using a single pair
of lossless transmission lines with the optimum phase
difference of 90°. In addition, o,, = 0p, for any number
of lossless lines.

The matrices (76) and (77) are straightforward to com-
pute using measured data. Although they must be in-
verted numerically, the process is not extremely time
consuming since the dimension is equal to the number of
lines, excluding the thru. One numerical problem may
arise if the effective phase difference, ¢ 4, of any line
pair is near 0°, for in that case V is nearly singular. A
solution to the problem is to choose the line i, common to
all line pairs, to have the greatest minimum ¢ . For
example, if we used lines of length 0, 2, 2, 6, and 6 cm, we
would be required to use the pairs 0-2, 0-2, 0-6, and
0-6. Any other choice of i would result in a singularity.
For best performance, i should in general be chosen anew
at each frequency.

This choice of line pairs affects only numerical stability,
not the actual variance. Assume, for example, that a 90°
line is equivalent to 4 cm. Then, in the example above, we
would be including the 45° and 135° pairs but excluding
the 90° pairs. Although it may appear that the most
effective information is being ignored, this is not in fact
the case, for the Gauss—Markov estimate automatically
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Fig. 1. Effective phase delays for three ideal TEM lines chosen ac-
cording to convention for 2-18 GHz. The open squares represent the
1.875 c¢m line, the open circles the 0.625 ¢m line, and the open diamonds
the difference between the two. The points represented by the solid
squares are used by conventional TRL.
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Fig. 2. Normalized standard deviation for the lines of Fig. 1. The
squares represent the conventional TRL method, the circles the multi-
line TRL method.

takes advantage of the measurement information in the
optimum fashion.

IV. PERFORMANCE OF THE MULTILINE CALIBRATION
MeTHOD

In order to draw concrete comparisons between the
conventional and multiline TRL methods, consider a loss-
less TEM calibration over the band 2-18 GHz. Conven-
tion holds that a pair of lines ought to be used over no
more than an 8:1 bandwidth, so we would normally use
three line standards (including the thru). A conventional
design uses a zero-length thru along with lines of lengths
0.625 cm and 1.875 cm. This results in a minimum effec-
tive phase difference of 45° at 2.0, 6.0, and 18.0 GHz, as
illustrated in Fig. 1. These three frequencies are local
maxima in the normalized standard deviation o, = oy,
as illustrated by the squares in Fig. 2. The circles in the
same figure represent the normalized standard deviation
using the same lines but applying the multiline TRL
described in this paper. The standard deviation of the
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Fig. 3. Effective phase delays for three ideal TEM lines chosen for
good performance over 2—18 GHz using the multiline TRL. The lengths
are 0, 0.75, and 2.25 cm.

multiline calibration is not only smaller but also consider-
ably smoother. In particular, the sharp peaks are elimi-
nated. This improvement is attained without any increase
in the number of standards.

In fact, the multiline standard deviation shown in Fig. 2
is not the optimum, since the line lengths were designed
for conventional TRL. Although we have no proof, an
optimal design seems to require one line to be a quarter
wavelength long at the band center and the other line to
be three times that length. For the 2—-18 GHz band, these
line lengths are 0.75 cm and 2.25 cm. The effective phase
differences for these lines are shown in Fig. 3. The
presence of the third curve, related to the difference
between the two lines, produces the symmetry; note that
lines of 1.5 and 2.25 cm would produce the same result.
The standard deviation is symmetric about the band cen-
ter and peaks at the edges, For the 2-18 GHz band, the
maximum normalized standard deviation is 1.18, as op-
posed to 1.35 for the multiline method using the stan-
dards of Fig. 1 and 1.41 using the conventional TRL
method.

Next we consider an actual set of coplanar waveguide
lines patterned on gallium arsenide. Lines 1, 2, and 3 had
lengths of 1.2850, 0.7415, and 0.2985 c¢m, so that the
lengths associated with the pairs 1-2, 1-3, and 2-3 were
0.5435, 0.9865, and 0.4430 c¢m, respectively. These lengths
were not designed as an optimum calibration set but
instead were chosen to illustrate the effectiveness of the
method.

The dark line of Fig. 4 shows the relative phase con-
stant (the imaginary part of the propagation constant
divided by its free-space value) of these lines as deter-
mined by the method of subsection III-A. Three other
curves are plotted; these represent the relative phase
constant as determined using each of the three line pairs
alone. Pair 1-3, which has the greatest length difference,
produces the smoothest of the three curves, as predicted
by (28). The symmetry of the other two curves about that
of pair 1-3 reflects the linear dependence of the errors
(see (63)).
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Fig. 4. Relative phase constant of a coplanar waveguide, determined
using lines 1 and 2, lines 1 and 3, and lines 2 and 3, as well as from the

multiline method using all three lines (dark curve). The curve represent-
ing lines 1 and 3 virtually duplicates the multiline curve.
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Fig. 5. Line loss of the coplanar waveguide, from the multiline method.
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Fig. 6. Normalized standard deviation (average of o, and o) deter-
mined using lines 1 and 2, lines 1 and 3, and lines 2 and 3, as well as
from the multiline method using all three lines (dark curve).

Fig. 5 shows the line loss factor, in dB/cm. Only the
minimum-variance estimate is shown. This graph is useful
in the interpretation of later results.

Fig. 6 plots the average of the two normalized standard
deviations o, and g, as computed from the method of
subsection III-B, for the three individual pairs alone as
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Fig. 8. Magnitude of reflection coefficient of a short circuit measured
using the four calibrations illustrated in Fig. 7. Multiline calibration is
represented by the dark curve.

well as for the minimum-variance estimate (dark curve).
The periodic peaks in the single-pair curves occur when
the effective phase delay is near 0°. The highest peaks
belong to the pairs of least length difference, as predicted
by (52). The longest line pair provides, in the worst case,
about twice the accuracy of the shorter pairs over this
band. The decline in the height of consecutive peaks
would appear to be caused by the increasing loss factor
(see Fig. 5).

A closeup view of Fig. 6 is presented in Fig. 7. In this
case, the individual curves peak in a fairly narrow fre-
quency band, so that one might expect to have difficulty,
even with the multiline estimate. In fact, the predicted
standard deviation does rise, but only to a moderate value
of 2.55. The effects of these peaks are clearly illustrated
in Fig. 8, which plots the magnitude of the measured
reflection coefficient of a nominal short circuit as deter-
mined using each of these four calibrations. The declines
in accuracy predicted by Fig. 7 are reflected in large
deviations in the three measurements using single-pair
calibrations. The locations and magnitudes of the peaks
concur with the theory. The multiline estimate also agrees
with the prediction by remaining quite flat.
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Fig. 9. Return loss of a line measured using the four calibrations
illustrated in Fig. 7. Multiline calibration is the dark curve. Data from
the three single-line calibrations are shown only where the effective
phase delay is between 20° and 160°. This is the portion of the band over
which single-line TRL is commonly used.

A final illustration (Fig. 9) uses the same calibrations as
Fig. 8 in the measurement of a transmission line not
belonging to the calibration set. The return loss using the
multiline method is approximately 50 dB. For the three
single-line calibrations, we include data only over the
portion of the band in which the effective phase delay is
between 20° and 160°, The point here is that the single-line
calibration is inferior even over the limited bandwidth
over which it is commonly applied.

V. CONCLUSION

This paper presents a detailed error analysis of the
TRL method. This allows the development of the covari-
ance matrix underlying a minimum-variance method using
multiple transmission line standards. Furthermore, the
analysis offers a means of assessing the errors in both the
conventional and multiline methods.

The multiline method offers a number of advantages:
better accuracy than any of the individual line calibra-
tions, more uniform accuracy across the band, and the
avoidance of band segmentation and associated frequency
discontinuities in calibration constants. Moreover, the cost
of implementation is small. In fact, for a wide calibration
band over which more than one line is needed in any
case, the proposed method simply provides a more effi-
cient utilization of available information at essentially no
cost. The actual expense of redundant standards depends
on the transmission line medium of interest. Whereas
coaxial transmission lines may be costly to produce and
time-consuming to measure, the same is not true of
planar standards such as microstrip and coplanar wave-
guide. Multiple planar standards are inexpensively pro-
duced on a single wafer, and wafer-probing techniques
allow for rapid measurement.

Although we have focused on using standards of vari-
ous lengths, there is nothing to prevent the use of multi-
ple lines of the same length or even multiple measure-
ments of the same line. As long as connector repeatability
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errors are the source of the calibration error, multiple
measurements should improve the overall accuracy, the
standard deviation varying roughly as the inverse square
root of the number of measurements. One purpose for
utilizing a large number of mecasurements is the assess-
ment of connector repeatability. The tools for this assess-
ment can be derived as a straightforward extension of the
methods discussed in this paper.

An important set of assumptions was made in deriving
the covariance matrix. These assumptions were founded
on the model of connector repeatability errors. Other
error models may lead to different covariance matrices. In
particular, errors due to random imperfections in the
lines themselves may need to account for correlations
between errors at the opposite ends of each line. Never-
theless, the effect of these changes on the actual esti-
mates is expected to be small.

Calibration methods similar to TRL are also amenable
to the analysis presented here. In particular, methods
using a match or attenuator instead of the line fit into the
general scheme presented, although an accurate model of
the errors may lead to a different estimate of the covari-
ance matrix,
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