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Abstract —This paper presents a new method for the calibra-

tion of network analyzers. The essential feature is the use of
multiple, redundant transmission line standards. The addi-

tional information provided by the redundant standards is used
to minimize the effects of random errors, such as those caused
by imperfect conuector repeatability. The resulting meth~d ex-

hibits improvements in both accuracy and bandwidth over con-

ventional methods.
The basis of the statistical treatment is a linearized error

analysis of the TRL (thru-reflect-line) calibration methodl. This
analysis, presented here, is useful in the assessment of calibra-

tion accuracy. It also yields new results relevant to the choice of

standards.

I. INTRODUCTION

PERHAPS the most precise means of network. ana-

lyzer calibration is the TRL (thru-reflect-line) method

[1]. This technique uses as standards two transmission

lines, one of which is designated the “thru,” as well as

an arbitrary one-port “reflect” termination, Certain in-

evitable errors, especially connector nonrepeatability, limit

the accuracy of any calibration method. The susceptibility

of the TRL method to these errors has not been previ-

ously studied in detail.

The TRL error analysis developed below is valuable

because it suggests tactics for error minimization, One

novel result requires a modification of conventional de-

sign rules for the choice of line lengths when the lines are

10SSY.LQSS is shown to increase the calibration accuracy,

so that a 10SSYline may provide a usable calibration over a

broader band than conventionally assumed.

In addition to error minimization, the results of the

error analysis suggest a strategy for error reduction. The

proposed method makes use of multiple, redundant line

standards, by which we mean more than one line in

addition to the thru.

The conventional TRL method, while employing multi-

ple lines, does not use them simultaneously. The method

is typically applied over a bandwidth no larger than 8:1.

For wider bandwidths, a second line is normally em-

ployed, and the band is split. This analysis will show that

the limitation of each line measurement to only a portion

of the band neglects a large amount of data that could be

used to reduce the overall error. Another drawback of the

Manuscript received November 5, 1990 revised March 15, 1991.
The author is with the National Institute of Standards and Technol-

Ogy, Mail Code 813.01, 325 Broadway, Boulder, CO 80303.
IEEE Log Number 9100134.

split-band method, namely the calibration discontinuity at

the frequeney break point, can also be eliminated.

Redundant standards have been used in previous cali-

bration methods. Least-squares solutions have been ap-

plied to both four-port [2] and six-port reflectometers [3],

[4]. An automatic network analyzer (ANA) calibration

method [5] allows incompletely characterized standards of

the TRL type but requires the iterative solution of an

overdetermined, nonlinear system of at least 12 simulta-

neous equations with nine complex unknowns. Unfortu-

nately, without accurate estimates of the relevant covari-

ances, none of these least-squares methods ensures

optimal (in some cases even unbiased) estimates of the

calibration constants.

In contrast, the present method makes use of the

known, linear solution to the simple TRL problem and

linearizes the errors. Iterative solutions are avoided lbe-

cause all computations are linear. The computations are

compact because the calibration constants are determined

individually instead of en masse. The order of the linear

systems is simply the number of lines, excluding the thru,

and some of the matrices are analytically invertible. Per-

haps the most significant distinction, however, is that, to

linear order, the current method provides optimal, mini-

mum-variance estimates of the calibration constants

themselves,

One other use of multiple transmission lines is our own

earlier version [6], [7], based on a crude estimate of the

covariance matrices instead of the expressions derived

here. The current method has previously been presented

in conference [8].

The current algorithm hinges on the determination of

the linearized covariance matrix. That matrix can be ex-

plicitly evaluated only with certain assumptions on the

nature of the errors and their correlations. The assump-

tions made here are appropriate to random repeatability

errors in connectors. In order to model other errors, such

as systematic transmission line imperfections, certain

modifications may need to be made. The errors need not

be normally distributed.

II. ERROR ANALYSIS

The problem is most conveniently analyzed in terms of

cascade parameters. We choose a definition such that the

cascade matrix of a two-port with cascade matrix A

~T.s. Government work not protected by U.S. copyright
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connected in series to the left of another two-port with

cascade matrix B is simply AB.

In order to take advantage of symmetries in the prob-

lem at hand, we require the capability of reversing the

direction of the cascade. The reverse cascade matrix,

which we denote by the overbar, is related to the matrix

inverse by

(1)

The measured cascade parameters of standard i are

simply

~i=~l~ (2)

where X and Y are the unknown cascade matrices to be

determined. The overbar in (2) reflects the fact that the

matrix Y is defined to cascade “right to left.” This

representation takes advantage of the symmetry; as a

consequence, all of the results shown here for determina-

tion of X lead directly to results for Y by the simple

exchange of the port numbers “l” and “2.”

In (2), Ti is the actual cascade matrix of standard i. If

the standard is an ideal transmission line and the connec-

tors are perfect, then Ti is simply given by

where y is the propagation constant and 1, is the length

of line i. If, however, the standard is a nonideal line, we

can represent its cascade matrix as

T’=(1+81’)Li( I+82i) (4)

where the (presumably) small matrices 6 Ii and 82’ repre-

sent imperfections, The introduction of two perturbing

matrices allows the association of an error term with each

port: SIi with port 1 and 82’ with port 2. This is a

convenient representation of nonideal connectors. Later

on, we will make some assumption about the statistical

distributions of these errors, For the moment, we assume

only that they are small.

To complete the symmetry of the description, the port

2 perturbation (1+ 82’), like Y, is defined to cascade

“right to left.”

Given any pair of line measurements, two equations of
the form (2) lead to

~ilx = ~LJ (5)

where

J&~J(J@ (6)

and

Til ~ Tl(Ti) -l. (7)

Consider first the case in which all of the 8’s vanish and

=[~ ;,,]= [e-’;-’)e+j,_,,)].(8,

In this case, as pointed out in [9], (5) has the form of an

eigenvalue problem; the diagonal elements (E;] and E~J)
of Ti~ are the eigenvalues and the columns of X the

eigenvectors, respectively, of ikfi~. Since each of the

eigenvectors is of arbitrary magnitude, (5) determines two

of the parameters of X.

If, instead, the lines or connectors are imperfect, then

TZJ is not diagonal and the problem is more complicated

since the eigenvectors of M’j are no longer the quantities

of interest. We therefore assume each 8 to be a small

parameter and consider the resulting perturbation prob-

lem for the eigenvectors and eigenvalues. In practice, we

always determine the eigenvalues and eigenvectors of

MiJ. These, however, are easily related to the eigenvalues

and eigenvectors of T’J. If V’~ and AiJ, respectively, are

the eigenvector and eigenvalue matrices of Tij, then

l=IJ ViJ = VtjAij (9)

from which follows

&fll,lJIJ = ulJAIJ (lo)

where

Ui.i = xvzj. (11)

In other words, &fiJ and T’J have the same eigenvalues,

and their eigenvectors are related by (11). Thus we can

analyze the effects of the perturbations on the matrix Mij

via their effects on T’j.
First expand the port 2 perturbation in terms of 82’, the

components of which we assume to have magnitude much

less than 1. To first order,

1+8’’= (l+8’’1=(1 (a2i)I)F-F. (12)

Using (12) in (4) and assuming that the components of

al’ are also small, we obtain the first-order result

(Ti)-l= (l-~) -l(Li)-l(l+@

++ F)(L’)-l (M”). ( 13)

Insert (13) into (7) and collect the first-order terms:

which can be expressed as

Tij ~ LEJ + ~tJ (15)./
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where the linear difference term is defined as

(16)

The errors are conveniently expressed in terms of the and

scattering parameters of the imperfections. To first order

in the elements of 8, the scattering matrices S 1’ and S2’ ~&l’

of the port 1 and port 2 imperfections, respectively, arel (3T;; ~=o
=1 (23)

[

8:; 1 + 8;!
Sii ~

1 – ‘s$2 – S;l 1 (17) with all other derivatives vanishing to zero order. Thus
(21) reduces to

[

– &[ 1 – 8;;
s2i ~

1+8;; 8;;,1 (18) and

A’~ = E;j+ e:j ==E:J(l+ 83 – 8% + 8:; – 8;: ). (25)
in terms of which (16) can be written, to first order, as

To first order, the off-diagonal elements of c (amd 8)
represent errors in the measurement of the reji!ection

coefficients of the line, whereas their diagonal elements

represent errors in the measurement of the transmission

coefficients of the line.

A. Eigenualue Perturbation and the Propagation Comtant

The eigenvalues A! and AiJ of T’J (and of A4iJ) are

but we know that the zero-order eigenvalues are E;J and

E?. We assume that the eigenvalue A? is associated with

E?, not with E?. In practice, this can be ensured by

comparing an estimate of E~J, based on an estimate of the

line lengths and the propagation constant, wit~ the two

computed eigenvalues. We seek an expansion of .k~ and

A~ about their zero-order values, of the form

where the notation S = O indicates the zero-order limit
81i = 62i = 61j = ?i2j = O. Carrying out the differentiation

leads to

(22)

lThe ports of the “imperfections” are numbered in accordance with
those of the AN& so that port 1 (port 2) is nearer port 1 (port 2) of the
ANA.

(19)

Equations (24) and (25) express the sensitivity of the

eigenvalues to the perturbations. Notice that they are

independent of the off-diagonal elements of the matrix

e2J. Linear errors in the eigenvaues are induced only by

errors in the transmission coefficients Slz and S21 of the

line measurements. Small rejections do not affect the

result.

Recall that Al and A1~ are the ~igenvalues of Mzj,

determined by the measured data. Also, E?= l/Ej =

exp ( – -y[lJ – 1,]). Provided the line lengths li and lj are

known, both (24) and (25) provide an estimate of E? and

thence the propagation constant y. At first glance, these

may appear to be independent measurements. However,

if the two imperfections are reciprocal, their S parameters

must satisfy the condition S12 = S21. In view of (17) and

(18), the estimates of E;’ from (24) and (25) are then

identical to first order and can be used interchangeably.

On the other hand, the two estimates may differ to

second order, so there may be slight advantage in using

the average of the two expressions. We therefore define

To first order, the geometric mean is identical to the

algebraic mean. The advantage of the geometric mean is

that it can be computed knowing only the ratios of the

elements of M’j, making it practical for use with dual-

reflectometer network analyzers which may not provide
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an explicit measurement of MiJ. Its drawback is that it

requires a root choice.

From (26), we solve for an estimate of the propagation

constant:

and

c + l)~j
~i, = -

a+ L)’lb “
(36)

Computation of the eigenvectors of the measured ma-

trix A4i], which requires only the ratios of the elements of

&f’J, produces aLJ and ~’j. In the errorless case 8 = O,

both p’j and u‘] vanish, and alJ and @’J reduce to b and

c/a, two parameters of the unknown matrix X which

were to be determined. The determination of b and c/a

is part of the standard TRL process.

More generally, we wish to observe the first-order ex-

pansions of azJ and /3ij with respect to small perturba-

tions. These take the form

,J = ln(Aij)
—=y+AyiJ

y – ii–l,
(27)

where the explicit linear error term is

2i - &~]. (28)+ dfl – 8?; + 822

This simple result clearly demonstrates that the error in y

is minimized by maximizing the difference in line lengths.

As discussed in the following subsection, the error in the

calibration constants is of entirely different form.

B. Eigenvector Perturbation and the Calibration Constants

Equation (9) defines Vtj as the eigenvector matrix of

Tij; that is, its columns are eigenvectors of T’J. In order

to normalize these eigenvectors, choose one element of

each column to be unity, thereby defining V ‘J by

(38)

The partial derivatives are expanded:

~a[j ~CYcJ’dpiJ ~aiJ ~ui.i
—. —— +——
dT,:n d/LiJ dT:Jn dvij ~TIJ

m n

(39)
(29)

but the last term vanishes. A similar expression holds for

BiJ.
The differentiations with respect to pij and u’j can be

carried out using (35) and (36); in the zero-order limit, the

One can determine IJ’J and Vij:

results are

~aiJ

~plJ

and

and

where the eigenvalues A’j are given by (20). If the errors 6

vanish, then T’J reduces to the diagonal matrix L[j and,

as a result, WiJand u ‘J also vanish.

The eigenvector matrix U’] of A4iJ is equal to XV1j.

~pij a–be
.—

13V’J~=0 a2 “
(41)

The other two, derivatives vanish.

In order to evaluate the derivatives of pLJ and u2J with

respect to the elements of T’J, return to (30) and (31).

The zero-order limits are

Representing X by

(32)

we find that
(42)

(33)
and

We may renormalize these eigenvectors by dividing the

first column by its first element and the second column by

its second element. Thus,

(43)

All of the other derivatives vanish in this limit.

Combining all of these results with (37) and (38) yields

aLJ~b+AaLJ (44)

and

(34)

where

b + pLJa
~LJ =

1 + UZJC
(35)

,.. u
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where the explicit linear error terms are

AaLJ ~ ~iJ a–bc
12 E;i _ E;]

and

(46)

(47)

Only the off-diagonal terms in ~ contribute first-order

errors in a’j and /3tj. Thus linear errors are induced only

by errors in the rejection coefficients S1l and Szz of the

line measurements, not by transmission errors. A perfect

match or attenuator therefore provides the same ca libra-

tion as a perfect transmission line standard. From the

previous section, however, we know that only the trans-

mission line allows the determination of the propagation

constant, required for movement of the reference plane.

Consider now the magnitude of the error term (46):

lAai’l < [18~;llE;Jl+ 18;;IIEYI

with a similar expression arising from (47). Since, for

small line loss, the terms Ejj and Ej have magnitude

near unity, the dominant factor in determining the typical

magnitude of the error terms is the denominator. We can

write

E~– E/=2jsin[@-jP] (49)

where j = ~ unless used as an index. We have defined

P ~ (Zj – li)Re(~) and @z (lj – li)Im(~) as the 10SS and
phase shift, respectively, associated with the difference in

line lengths. Equation (49) leads to

lE~’ - E~12 = 4sin2@cosh2p +4cos2@sinh2p. (50)

For a lossless line, p = O and

1
lAaijl,lApijl a —

2\sin@l -
(51)

This result, that the error in the lossless case is inversely

proportional to the sine of the phase difference, was given

by Hoer [10]. In particular, the error becomes infinite

when the difference in phase delays is an integral multi-

ple of 180°, illustrative of the well-known fact that the

TRL procedure is ill conditioned near these points.

In the 10SSYcase, (51) is invalid near the maximum

error points, because (50) never vanishes. For the case of

low loss,

1 1 1

lE~j– E~l S 21sinhp\ “~”
(52)

This result has interesting implications. For example, con-

sider a pair of lines with a 18(Y phase difference at some

frequeney. Another pair of lines with twice the difference

in length will have a 36CP phase difference and will also

produce an ill-conditioned calibration problem. However,

the calibration error of the latter line pair is expected to

be only about half that of the first pair since p is

doubled.

This analysis of 10SSYlines yields some new design rules,

even in the case of conventional TRL calibration. For

example, it is common practice to limit a single pair of

lines to between 2(P and 160’. For a Iossless line, the

expected error at the band edges is approximately 2.92

times that at the optimal (9(Y) point. On the other hand,

for a lossy line with p = 1/2.92 = 0.35, (52) predicts a

worst-case error, at 0° and 180°, that is no worse than the

lossless line at 2(Y and 16(P. The accuracy increases

linearly with both the attenuation factor and the length

difference. Of course, for large losses, we need to con-

sider the numerator as well as the denominator of (46). A

more exact calculation of the probable error is discussed

in Section HI. In general, if the loss is great enough, the

phase difference criterion is irrelevant and the calibration

bandwidth may be greatly extended. This is an advantage

of the LRM calibration method [11], which uses a

“match,” equivalent to an infinitely lossy attenuator, in

place of the line. One drawback of LRM is that it fails to

provide the propagation constant required to shift the

reference plane.

For the 10SSY case, it is appropriate to define the

effectiue phase difference, +.ff:

‘( E;J - Ef)fbeff = arcsin z (53)

since it is 1/I sin (~~ff )1 rather than 1/I sin@ I which actu-

ally predicts the error. We stipulate that ~eff = 90° if the

argument of the arcsin is greater than 1. Since in the TRL

case an estimate of E? is available from the procedure of

subsection II-A, ~~ff is easily computed as part of the

calibration routine.

All of the results of this section are applicable to the

determination of the second cascade matrix Y by the

interchange of Y and X and that of the port identifica-

tions 1 and 2.

C. Completion of the Calibration

In order to complete the calibration by determining the

remaining constants a and J-, additional measurements

are required. The simplest requires the measurement of a

single unknown reflect termination on both ports [11. The

analysis of the error involved in this procedure is not

included here.

HI. REDUNDANT MEASUREMENTS

The results (27) for the propagation constant and (44)

and (45) for the calibration constants form the basis of a

statistical treatment of redundant measurements. By way

of introduction, consider how we might use a redundant

set of “noisy” measurements of some parameter. If the

measurements are equally noisy, we might expect simple

data averaging to yield the most accurate estimate. On

the other hand, we may find that some measurements are
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inherently more noisy than others. Rather than either

ignoring these data or blindly including them in the

average, the best estimate of the parameter comes from a

weighted average in which the noisy data are given less

significance. The complete theory includes not only the

variations in accuracy of the various measurements but

also the correlations among them. It is this theory that we

require here and which will be briefly sketched in its

simplest relevant form.

Suppose that we wish to determine some parameter x.

To do so, we make IV measurements b. of the quantity

a. x, where a,, is presumed known. Each of these mea-

surements differs from the “true” value a. x by some

amount e.:

b.=a..x+e.. (54)

Assume that e. is a random variable whose expectation

value (denoted by (e.)) vanishes; that is, no systematic

errors are present. Let b and a represent column vectors

whose elements are b. and a.. According to the

Gauss–Markov theorem [12], the best unbiased linear

estimate of x is

x=(gK)2a+V-lb— (55)

where “ ?“ indicates Hermitian adjoint, the covariance

matrix V is defined by

V~~ = (e~e.) (56)

and UX, defined by

1

““m
(57)

is the standard deviation of Z. The estimate (55) is “best”

because it minimizes the variance of x. No assumption

about the distribution of errors is req~ired in establish-

ment of this theorem.

A. Propagation Constant

The theory is applicable to the results of subsection

II-A with the substitutions

x=-y (58)

b,, = In ( A“) (59)

a,j = 1, – lj (60)

and

el]
=K, —Ki (61)

where the term

~i=;[a};-cs~+a;;-ti;;] (62)

includes errors caused only by a single line. Note that a

multi-index ij is used in place of the single index n used

previously.

In attempting to gather additional information concern-

ing y, we might first seek to reiterate the analysis of

subsection II-A but with the port identities interchanged.

Unfortunately, (28) is invariant with respect to this change,

so no additional information is to be had. The same is

true of the interchange of the line identities i and j. Only

additional measurements provide additional information.

Now consider the addition of a third line measurement

Mk to the two we have discussed. This provides two

further measurements, b,k and blk, in addition to (59).

Unfortunately, these three are not linearly independent,

since

ell + elk = elk. (63)

The Gauss–Markov theorem cannot be applied to a set of

linearly dependent measurements, since the resulting co-

variance matrix is singular. Only two of the three mea-

surements may be used. In general, we find that N

linearly independent measurements of the propagation

constant arise from the measurement of N + 1 transmis-

sion lines (including the thru). We can consider these N

measurements to arise from the pairing of a particular

line i = O with each of the other lines,

In order to evaluate V, we must make some assump-

tions about the nature of the errors. However, in this

case, these assumptions do not need to be very restrictive,

since the covariances are simply

(e~e~~) = ((Kj ‘Ki)*(K1– Kk))

= (K~K1)+ (KyKk}- (K~K1)-(K~Kk). (64)

In the absence of any a priori reason to assume a

correlation between the errors in the measurements of

two different lines, we will ignore terms on the right with

nonmatching indices. Further, we assume for the pur-

poses of this paper that each of the lines is equally prone

to error. Thus,

(K~Kj) = f3f(aK)2 (65)

where i3,~ is the Kronecker delta and UK is the standard

deviation in any of the K,.

We choose a simple ordering scheme in which a single

line measurement is common to all pairs. Specifically, in

(59), we let i = O represent the common line and let j run
from 1 through N. This provides the required N linearly

independent measurements and allows for the ready com-

putation of the covariance matrix:

Vmn=(l+tifn)(aK)’ (66)

which is explicitly invertible as

(
1

) 1
(67)(V-l)n.= a;.–N+l (#”

Numerical matrix inversion is not required. Furthermore,

knowledge of mK is not required in the evaluation of y,

since it appears in both the numerator and denominat~r

of (55). Knowledge of VK serves only to predict the

absolute variance of y. On the other hand, we can always

predict relative estitiates of U7 and thereby compare

various sets of calibration standards.



MARKS: A MULTILINE METHOD OF NETWORK ANALYZER CALIBRATION 1211

B. Calibration Constants

The application of the Gauss–Markov theorem to the

results of subsection II-B requires the substitutions

X=(;}={c;a]

{}
a?ij

bij= Pcj

(68)

(69)

aij = 1 (70)

and

(71)

The three measurements ACY’J, Aaik, and AaJk are

jointly linearly dependent, and likewise A@, A@h, and

A~Jk. Thus we use an ordering similar to that c}f the

previous section, forming N linearly independent mea-

surements by pairing some line i = O with each of the

other N ~lines.

For both b and c/a, the computation of V requires

the evaluation of 16 covariances among the elements of

the matrices 8. These have the form

(~zj*~kl)
mn pq . (72)

Some of these terms are calculable under fairly general

assumptions. Under the postulate that the errors in dif-

ferent lines are uncorrelated, half of the terms, thos: with

j #1, vanish. More problematic are terms of the form

(73)

These terms may or may not vanish according to whether

or not the errors in the measurement are due to imper-

fect lines or imperfect connectors. If the lines are imper-

fect, we may well expect the port 1 and port 2 errors to be

correlated. On the other hand, errors caused only by

imperfect repeatability of the two connectors ought not to

be correlated. For this paper, we select the latter view-

point and thereby ignore the terms (73).

The only terms remaining are

Making the reasonable assumption that ports 1 andl 2 are

equally “noisy,” the first and second terms and the third

and fourth terms of (74) are identical. In the absence of

any detailed information as to the nature of the connector

imperfection, we also make the plausible assumpticm that

the first and third terms are equal:

(75)

This amounts to the assumption that Sll and S22 of the
connector are equally “noisy,” as would be true for a

lossless imperfection.

Lest any of these assfimptions leave us uncomfortable,

we note that any estimate of the form (55), regardless of

the validity of V, remains unbiased, if not the optimum

estimate.

Using these conjectures, we compute the covariance

matrix for a:

+(1+ af)IE;12E~E~] (76)

and for ~:

‘]. (77)+(l+8Jf)l Ej2E~E2

Once again, the constant factors Ua, Ia – bc 1, and Ial are

required only to evaluate the variance in the estimates of

a and ~; they do not affect the estimates themselves.

Furthermore, we can define the normalized standard de-

viations

and

o-p

‘p” = Ial’la – bcI~8

(78)

(79)

which do not depend on any of these factors but only on

the properties of the calibration standards. In fact (78)

and (79) can be readily calculated using only the factors

E:, which can be computed using the propagation con-

stant, estimated in the previous section, and the known

line lengths. For the most part, these terms appear in the

form E~ and E;; these are directly estimable as A? and

A! without reference to line lengths. The normalization is

such that Oao = U60 = 1 for a calibration using a single pair

of lossless transmission lines with the optimum phase

difference of 9CF’. In addition, Uao = mpo for any number

of lossless lines.

The matrices (76) and (77) are straightforward to com-

pute using measured data. Although they must be in-

verted numerically, the process is not extremely time

consuming since the dimension is equal to the number of

lines, excluding the thru. One numerical problem may

arise if the effective phase difference, ~.ff, of any Iline

pair is near 0’, for in that case V is nearly singular. A

solution to the problem is to choose the line i, common to

all line pairs, to have the greatest minimum ~eff. For

example, if we used lines of length O, 2, 2, 6, and 6 cm, we

would be’ required to use the pairs O–2, O–2, O–6, and

0–6. Any other choice of i would result in a singularity.

For best performance, i should in general be chosen anew

at each frequency.

This choice of line pairs affects only numerical stability,
not the actual variance. Assume, for example, that a 90°

line is equivalent to 4 cm. Then, in the example above, we

would be including the 45° and 135° pairs but excluding

the 9@ pairs. Although it may appear that the most

effective information is being ignored, this is not in fact

the case, for the Gauss–Markov estimate automatically
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Fig. 2. Normalized standard deviation for the lines of Fig. 1. The
squares represent the conventional TRL method, the circles the mrrlti-
line TRL method.

takes advantage of the measurement information in the

optimum fashion.

IV. PERFORMANCE OF THE MULTILINE CALIBRATION

METHOD

In order to draw concrete comparisons between the

conventional and multiline TRL methods, consider a Ioss-

Iess TEM calibration over the band 2– 18 GHz. Conven-
tion holds that a pair of lines ought to be used over no

more than an 8:1 bandwidth, so we would normally use

three line standards (including the thru). A conventional

design uses a zero-length thru along with lines of lengths

0.625 cm and 1.875 cm. This results in a minimum effec-

tive phase difference of 45° at 2.0, 6.0, and 18.0 GHz, as

illustrated in Fig. 1. These three frequencies are local

maxima in the normalized standard deviation mao= mpo,

as illustrated by the squares in Fig. 2. The circles in the

same figure represent the normalized standard deviation

using the same lines but applying the multiline TRL

described in this paper. The standard deviation of the

)

Frequency (GHz)

Fig. 3. Effective phase delays for three ideal TEM lines chosen for
good performance over 2–18 GHz using the multiline TRL. The lengths
are O, 0.75, and 2.25 cm.

multiline calibration is not only smaller but also consider-

ably smoother. In particular, the sharp peaks are elimi-

nated. This improvement is attained without any increase

in the number of standards.

In fact, the multiline standard deviation shown in Fig. 2

is not the optimum, since the line lengths were designed

for conventional TRL. Although we have no proof, an

optimal design seems to require one line to be a quarter

wavelength long at the band center and the other line to

be three times that length. For the 2–18 GHz band, these

line lengths are 0.75 cm and 2.25 cm, The effective phase

differences for these lines are shown in Fig. 3. The

presence of the third curve, related to the difference

between the two lines, produces the symmet~ note that

lines of 1.5 and 2.25 cm would produce the same result.

The standard deviation is symmetric about the band cen-

ter and peaks at the edges, For the 2–18 GHz band, the

maximum normalized standard deviation is 1.18, as op-

posed to 1.35 for the multiline method using the stan-

dards of Fig. 1 and 1.41 using the conventional TRL

method.

Next we consider an actual set of coplanar waveguide

lines patterned on gallium arsenide. Lines 1, 2, and 3 had

lengths of 1.2850, 0.7415, and 0.2985 cm, so that the

lengths associated with the pairs 1–2, 1–3, and 2–3 were

0.5435, 0.9865, and 0.4430 cm, respectively. These lengths

were not designed as an optimum calibration set but

instead were chosen to illustrate the effectiveness of the
method.

The dark line of Fig. 4 shows the relative phase con-

stant (the imaginary part of the propagation constant

divided by its free-space value) of these lines as deter-

mined by the method of subsection III-A. Three other

curves are plotted; these represent the relative phase

constant as determined using each of the three line pairs

alone. Pair 1–3, which has the greatest length difference,

produces the smoothest of the three curves, as predicted

by (28). The symmetry of the other two curves about that

of pair 1–3 reflects the linear dependence of the errors

(see (63)).
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Fig, 5. Line loss of the coplanar waveguide, from the multiline method.
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mined using lines 1 and 2, lines 1 and 3, and lines 2 and 3, as weli as
from the multiline method using all three lines (dark curve).

Fig. 5 shows the line loss factor, in dB/cm. Only the

minimum-variance estimate is shown. This graph is useful

in the interpretation of later results.

Fig. 6 plots the average of the No normalized standard

deviations OaO and m~o, as computed from the method of

subsection III-B, for the three individual pairs alone as
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Fig. 7. Close-up view of Fig. 6.
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Fig. 8. Magnitude of reflection coefficient of a short circuit measured
using the four calibrations illustrated in Fig, 7. Multiline calibration is
represented by the dark curve.

well as for the minimum-variance estimate (dark curve).

The periodic peaks in the single-pair curves occur when

the effective phase delay is near O“. The highest peaks

belong to the pairs of least length difference, as predicted

by (52). The longest line pair provides, in the worst case,

about twice the accuracy of the shorter pairs over this

band. The decline in the height of consecutive peaks

would appear to be caused by the increasing loss factor

(see Fig. 5).
A closeup view of Fig. 6 is presented in Fig. 7. In this

case, the individual curves peak in a fairly narrow fre-

quency band, so that one might expect to have difficulty,

even with the multiline estimate. In fact, the predicted

standard deviation does rise, but only to a moderate value

of 2.55. The effects of these peaks are clearly illustrated

in Fig. 8, which plots the magnitude of the measured

reflection coefficient of a nominal short circuit as deter-
mined using each of these four calibrations. The declines

in accuracy predicted by Fig. 7 are reflected in large

deviations in the three measurements using single-pair

calibrations. The locations and magnitudes of the peaks

concur with the theory. The multiline estimate also agrees

with the prediction by remaining quite flat.
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Fig. 9. Return loss of a line measured using the four calibrations
illustrated in Fig. 7. Multiline calibration is the dark curve. Data from
the three single-line calibrations are shown only where the effective
phase delay is between 20° and 160°. This is the portion of the band over
which single-line TRL is commonly used.

A final illustration (Fig. 9) uses the same calibrations as

Fig. 8 in the measurement of a transmission line not

belonging to the calibration set. The return loss using the

multiline method is approximately 50 dB. For the three

single-line calibrations, we include data only over the

portion of the band in which the effective phase delay is

between 2@ and 160°. The point here is that the single-line

calibration is inferior even over the limited bandwidth

over which it is commonly applied.

V. CONCLUSION

This paper presents a detailed error analysis of the

TRL method. This allows the development of the covari-

ance matrix underlying a minimum-variance method using

multiple transmission line standards. Furthermore, the

analysis offers a means of assessing the errors in both the

conventional and multiline methods.

The multiline method offers a number of advantages:

better accuracy than any of the individual line calibra-

tions, more uniform accuracy across the band, and the

avoidance of band segmentation and associated frequency

discontinuities in calibration constants. Moreover, the cost

of implementation is small. In fact, for a wide calibration

band over which more than one line is needed in any

case, the proposed method simply provides a more effi-

cient utilization of available information at essentially no

cost. The actual expense of redundant standards depends

on the transmission line medium of interest. Whereas

coaxial transmission lines may be costly to produce and

time-consuming to measure, the same is not true of

planar standards such as microstrip and coplanar wave-

guide. Multiple planar standards are inexpensively pro-

duced on a single wafer, and wafer-probing techniques

allow for rapid measurement.

Although we have focused on using standards of vari-

ous lengths, there is nothing to prevent the use of multi-

ple lines of the same length or even multiple measure-

ments ,of the same line. As long as connector repeatability

errors are the source of the calibration error, multiple

measurements should improve the overall accuracy, the

standard deviation varying roughly as the inverse square

root of the number of measurements. One purpose for

utilizing a large number of measurements is the assess-

ment of connector repeatability. The tools for this assess-

ment can be derived as a straightforward extension of the

methods discussed in this paper.

Art important set of assumptions was made in deriving

the covariance matrix. These assumptions were founded

on the model of connector repeatability errors. Other

error models may lead to different covariance matrices. In

particular, errors due to random imperfections in the

lines themselves may need to account for correlations

between errors at the opposite ends of each line. Never-

theless, the effect of these changes on the actual esti-

mates is expected to be small.

Calibration methods similar to TRL are also amenable

to the analysis presented here. In particular, methods

using a match or attenuator instead of the line fit into the

general scheme presented, although an accurate model of

the errors may lead to a different estimate of the covari-

ance matrix.
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